Operational Recommendations

for

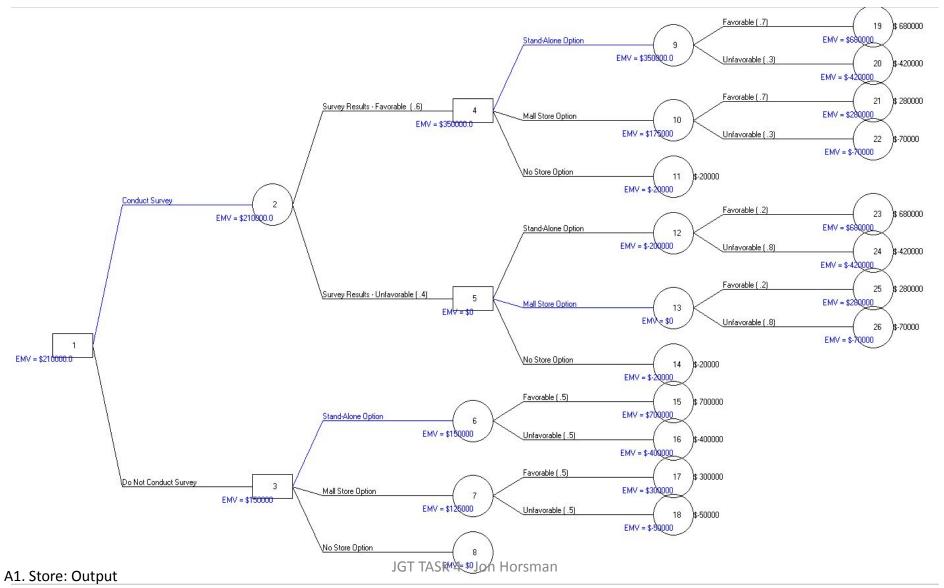
Presented by Jon Horsman (operations consultant)

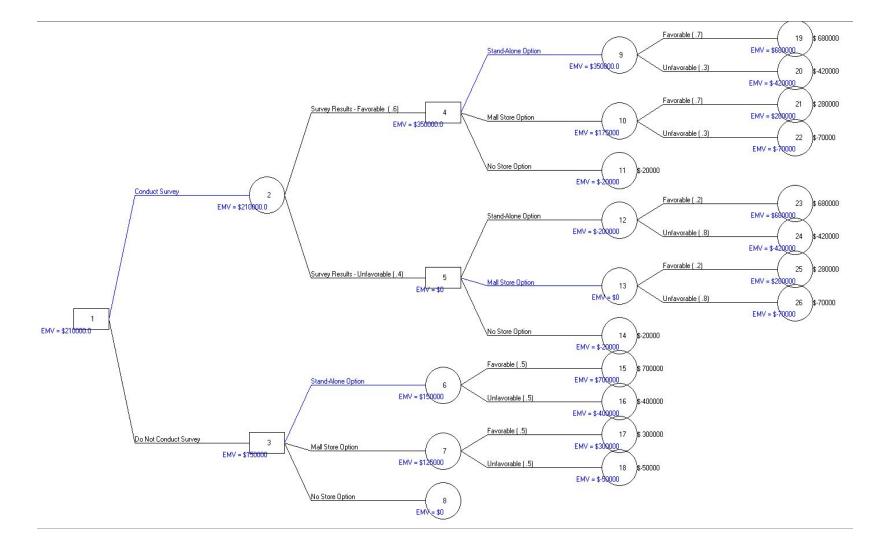
JGT TASK 4 - Jon Horsman

Store Recommendations

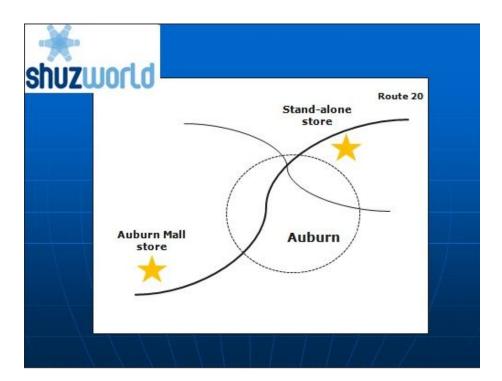
The first option is the stand-alone option which is a lease option just outside of Auburn.

The second option is to open a store in the Auburn Mall.


The third option is to do nothing at this time and wait for the market to improve.



Store Decision Analysis Output



Explanation for Store Recommendation

Local Alternatives

Proximity to the Market

Proximity to the Suppliers

Proximity to the Competitors (Clustering)

Project Techniques

Planning

Determine the Project Activities Task Sequence Task Time

Scheduling

Network Diagram The Start and End Times Slack and Flexibility in each task Critical Path

Controlling

Probability of Project Completion Crashing the Project

Project Management Tools

Gantt Charts (PERT) Program Evaluation and Review Techniques (CPM) Critical Path Method

Network Diagram

Shuzworld One Expansion Project

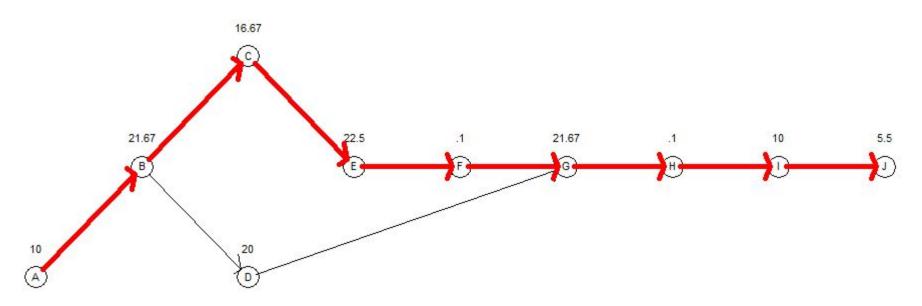
			(T	Time Estimates (days)							
Activity	Description	Predecessors	Optimistic	Most Likely	Pessimistic	Crash Cost/Day					
Α	Funding/liability protection	2000 - 2000 2000 - 2000 2000 - 2000	5	10	15	\$1,000					
В	Excavate grounds A		10	20	40	2,500					
с	Pour foundation	В	10	15	30	2,000					
D	Inspect new equipment	В	10	20	30	500					
E	Install utilities	С	15	20	40	4,000					
F	Inspection(utilities)	E	0.1	0.1	0.1	0					
G	Build out facility	D,F	15	20	35	1,500					
Н	Final inspection	G	0.1	0.1	0.1	0					
I	Prep for operations-signs, etc.	Н	5	10	15	500					
J	Clean-up	I	3	5	10	1,200					

B1. Network Diagram

JGT TASK 4 - Jon Horsman

Network Diagram Critical Path Results

PERT/CPM Entry of Information

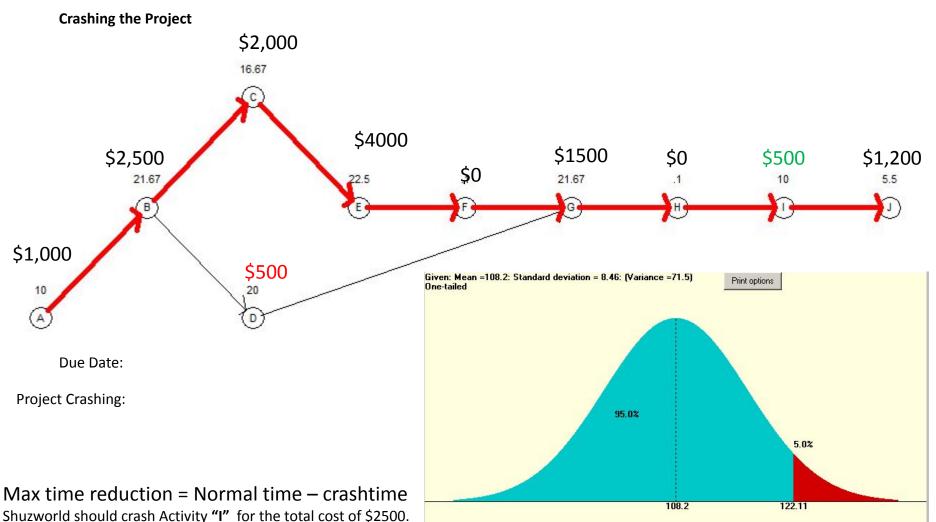

-Network type			Metho	Method								
 Immediate pred Start/end node 			Triple ti	Triple time estimate								
				5-61 M		0.00	(untitled)					
Activity	Optimistic time	Most Likely time	Pessimistic time	Predecessor 1	Predecessor 2	Predecessor 3	Predecessor 4					
A	5	10	15									
В	10	20	40	а								
С	10	15	30	b	-							
D	10	20	30	b								
E	15	20	40	с								
F	.1	.1	.1	e								
G	15	20	35	d	f							
н		.1	.1	g			0					
1	5	10	15	h								
J	3	5	10	i								

PERT/CPM Main Results Output from the Above Information

Activity	Activity time	Early Start	Early Finish	Late Start	Late Finish	Slack	Standard Deviation
Project	108.2						8.46
A	10	0	10	0	10	0	1.67
В	21.67	10	31.67	10	31.67	0	5
С	16.67	31.67	48.33	31.67	48.33	0	3.33
D	20	31.67	51.67	50.93	70.93	19.27	3.33
E	22.5	48.33	70.83	48.33	70.83	0	4.17
F	.1	70.83	70.93	70.83	70.93	0	(
G	21.67	70.93	92.6	70.93	92.6	0	3.33
н	.1	92.6	92.7	92.6	92.7	0	(
1	10	92.7	102.7	92.7	102.7	0	1.67
J	5.5	102.7	108.2	102.7	108.2	0	1.17

Network Diagram Critical Path Results

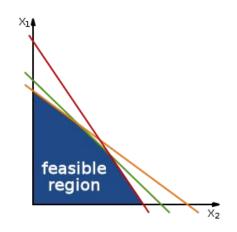
PERT/CPM Main Results Output with the Precedence Graph



108.2 *days* + (1.64 *z*-value x 8.46 *stand deviation*) = 122.07 days (round-up to 123 days)

Network Diagram

Crashing the Project By 5 Days



This is from the cost of \$500 per day for a total of \$2,500 for the 5 days.

B1. Network Diagram

Trade-Offs

Linear Programming is a mathematical technique to help make and plan decisions.

These decisions which are relative to their Trade-offs help determine the best allocation of resources.

As a result, Linear Programming will discover the minimum and Maximum values for the objective.

By using Linear Programming, it will guarantee the optimal solution for the selected model.

Example of Trade-off would be:

Having Fewer Production Line Workers would Minimize Cost Of the Production Line. Allocating those Production Line Workers to other Projects that are being Crashed to meet the goal. Creating a Work/Staffing Schedule that meets the Line Production Goals while Minimizing Staff.

Production Recommendation Production Mix for KidsShuz Shoes and Sneakers

Shuzworld has a production plan of 50 batches of shoes and sneakers for this period. We have found the best solution to meet the requirements as well as minimizing production costs.

The first thing we did was to define our variables.

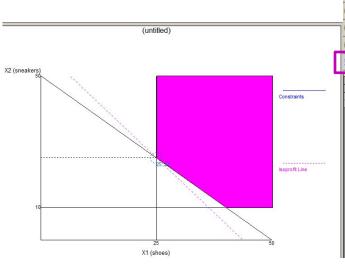
Shuzworld needs a production plan for 50 batches that will meet all requirements and minimize production costs.

Forecasted demand requires 25 Batches of Kidshuz shoes and at least 10 batches of Kidshuz sneakers for this month.

Shoes Cost \$2000 per batch and Sneaker are \$1,500 per batch.

Company needs Production Contraints to minimize production costs.

Production Output


Production Mix for KidsShuz Shoes and Sneakers

Objective C Maximize C Minimize			Instruction Enter the v		traint 3 for rhs. Any non-negative valu		
	X1 (shoes)	X2 (sneakers)		RHS	Equation form		
Minimize	2000	1500			Min 2000X1 (shoes) + 1500X2		
Constraint 1	1	0	>=	25	X1 (shoes) >= 25		
Constraint 2	0	1	>=	10	X2 (sneakers) >= 10		
Constraint 3	1	1	>=	50	X1 (shoes) + X2 (sneakers) >= 0		

This is the information about the Variables and the Constraints Required to find the best solution

This is the information about the Variables and the Constraints Required to find the best solution:

The Optimal minimized production cost is \$87,500 It also shows that the best solution is 25 batches of shoes and 25 batches of sneakers

Objective	Instruction
C Maximize	There are more res
Minimize	

	X1 (shoes)	X2 (sneakers)		RHS	Dual
Minimize	2000	1500			
Constraint 1	1	0	>=	25	-500
Constraint 2	0	1	>=	10	0
Constraint 3	1	1	>=	50	-1500
Solution->	25	25	Optimal Z->	87500	

C1a. Production Output & C1ai Explanation

JGT TASK 4 - Jon Horsman

87,500 95,000

<1 (shnes

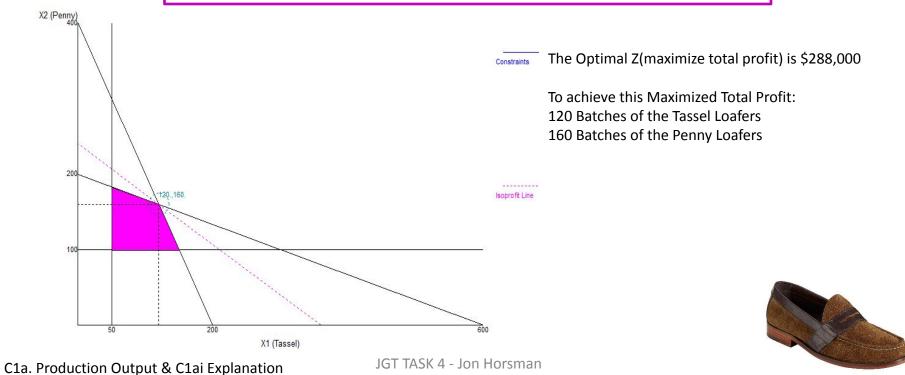
Production Recommendation

Production Mix for Kiltie Tassel Loafer and the Classic Penny Loafer

Product		Asser Depart		Finish Departi		Profit per batch
Batches of Tassel Loafers		2 hours		8 hours		\$800
Batches of Penny Loafers		6 hours		4 hours		\$1,200
Department	Capao	Capacity Hours		Product		oduction Level
Assembly		1200		Batches of Tassel Loafers		50
Finishing		1600	Batches of I	Batches of Penny Loafers		100

This is the information about the Variables and the Constraints Required to find the best solution

Objective Maximize Minimize			Enter the name for this variable. Almost any char Enter the name for this variable.			
	X1 (Tassel)	X2 (Penny)		RHS	Equation form	
Maximize	800	1200			Max 800X1 (Tassel) + 1200X2 (Penny)	
Constraint 1(assembly)	2	6	<=	1200	2X1 (Tassel) + 6X2 (Penny) <= 1200	
Constraint 2 (finishing)	8	4	<=	1600	8X1 (Tassel) + 4X2 (Penny) <= 1600	
Constraint 3	1	0	>=	50	X1 (Tassel) >= 50	
Constraint 4	0	1	>=	100	X2 (Penny) >= 100	


C1. Production Recommendations

JGT TASK 4 - Jon Horsman

Production Output

Production Mix for Kiltie Tassel Loafer and the Classic Penny Loafer

	X1 (Tassel)	X2 (Penny)		RHS	Dual
Maximize	800	1200			
Constraint 1(assembly)	2	6	<=	1200	160
Constraint 2 (finishing)	8	4	==	1600	60
Constraint 3	1	0	>=	50	0
Constraint 4	0	1	~-	100	0
Solution->	120	160	Optimal Z->	288000	

Orders by the Case (one Dozen Shoes) Daily Demand is: 7 to 12 cases per Day

Cases sold per day	Frequency of days given cases sold
7	34
8	36
9	38
10	42
11	26
12	24
1	Total Days = 200

This is the Aggregated Sales Over the Last 200 Days

Lead time Delivery Variance: 1 to 3 days (delivery next morning is counted as day 1)

Lead time for delivery	Frequency of days for delivery time
1	12
2	20
3	8
	'otal Days = 40 ext morning constitutes Day # 1

This is the 40 day-snapshot with the Frequency of days for delivery time.

We will be trying to determine if the Reordering of 30 case when the Inventory Level drops down to 12 or under in this simulation based upon the information supplied by Shuzworld

Monte Carlo Simulation for 20 day Inventory Simulation

Number of Trials is 20

Computer generated						•	20]
Simulation Results										Runs		_0>
Category name	Value	Frequency	Probability	Cumulative Probability	Value * Frequency	currences	Percentage	ccurences * Value	Number	(ur Random Number	ntitled) Solution Category	Value
Cases 7 per day	1	34	.17	.17	.17	3	.15	3	1	.72	Cases 10 per day	4
Cases 8 per day	2	36	.18	.35	.36	5	.25	10	2	.28	Cases 8 per day	2
Cases 9 per day	3	38	.19	.54	.57	4	.2	12	3	.74	Cases 10 per day	4
Cases 10 per day	4	42	.21	.75	.84	5	.25	20	4	.13	Cases 7 per day	1
ases 11 per day	5	26	.13	.88	.65	3	.15	15	5	.66	Cases 10 per day	4
ases 12 per day	6	24	.12	1	.72	0	0	0	6	.27	Cases 8 per day	2
otal		200	1	Expected	3.31	20	1	60	7	.37	Cases 9 per day	3
andom Number 1							Average	3	8	.34	Cases 8 per day	2
									9	.29	Cases 8 per day	2
									= 10	.86	Cases 11 per day	5
									11	.76	Cases 11 per day	5
									12	.41	Cases 9 per day	3
									13	.43	Cases 9 per day	3
									14	.72	Cases 10 per day	4
									15	.14	Cases 7 per day	1
									16	.14	Cases 7 per day	1
									17	.47	Cases 9 per day	3
									18	.6	Cases 10 per day	4
									19	.81	Cases 11 per day	5
									20	.27	Cases 8 per day	2

The Value Column is the Simulated Days Sales

Monte Carlo Simulation for Lead Time

Random numbers Computer generated				Seed 0									
Simulation Results									🔶 Individual I	Carlo Carlos			
Catagonia	Mahua	Value Frequency Probability Cumulative Value * currences Percentage courences							(untitled) Solution Number Random Category				
Category name	value	riequency	Probability		Frequency	currences	Percentage	ccurences * Value	Number	Number	Category	Value	
ead Time for Delivery 1	1	12	.3	.3	.3	6	.3	6	1	.19	Lead Time for Delivery 1	1	
ead Time for Delivery 2	2	20	.5	.8	1	8	.4	16	2	.3	Lead Time for Delivery 2	2	
ead Time for Delivery 3	3	8	.2	1	.6	6	.3	18	3	.33	Lead Time for Delivery 2	2	
otal		40	1	Expected	1.9	20	1	40	4	.34	Lead Time for Delivery 2	2	
andom Number 1							Average	2	5	.8	Lead Time for Delivery 3	3	
				91 1					6	.28	Lead Time for Delivery 1	1	
									7	.08	Lead Time for Delivery 1	1	
									8	.18	Lead Time for Delivery 1	1	
									22.50				
									9	.82	Lead Time for Delivery 3		
									9 10	.82 .35	Lead Time for Delivery 3 Lead Time for Delivery 2		
									10	.35	Lead Time for Delivery 2	3	
									10 11	.35	Lead Time for Delivery 2 Lead Time for Delivery 1	:	
									10 11 12	.35 .06 .59	Lead Time for Delivery 2 Lead Time for Delivery 1 Lead Time for Delivery 2		
									10 11 12 13	.35 .06 .59 .65	Lead Time for Delivery 2 Lead Time for Delivery 1 Lead Time for Delivery 2 Lead Time for Delivery 2	2	
									10 11 12 13 14	.35 .06 .59 .65 .91	Lead Time for Delivery 2 Lead Time for Delivery 1 Lead Time for Delivery 2 Lead Time for Delivery 2 Lead Time for Delivery 3		
									10 11 12 13 14 15	.35 .06 .59 .65 .91 .18	Lead Time for Delivery 2 Lead Time for Delivery 1 Lead Time for Delivery 2 Lead Time for Delivery 2 Lead Time for Delivery 3 Lead Time for Delivery 1		
									10 11 12 13 14 15 16	.35 .06 .59 .65 .91 .18 .51	Lead Time for Delivery 2 Lead Time for Delivery 1 Lead Time for Delivery 2 Lead Time for Delivery 2 Lead Time for Delivery 3 Lead Time for Delivery 1 Lead Time for Delivery 2		
									10 11 12 13 14 15 16 17	.35 .06 .59 .65 .91 .18 .51 .73	Lead Time for Delivery 2 Lead Time for Delivery 1 Lead Time for Delivery 2 Lead Time for Delivery 2 Lead Time for Delivery 3 Lead Time for Delivery 1 Lead Time for Delivery 2 Lead Time for Delivery 2		

This the Testing for a Reorder Policy with Information from Shuzworld

y	Units Received	Beginning Inventory	RandomNumber	Demand	Ending Inventory	Lost Sales	Order ?	Random Number	Lead Time
1		30	0.72	10	20	0	no		
2		20	0.28	8 8	12	0	yes	0.19	1
3	3 30	42	2 0.74	10	32	. 0	no		
4	A	32	0.13	7	25	0	no		
5		25	5 0.66	i 10	15	0	no		
6		15	5 0.27	7 8	7	0	yes	0.3	2
7		7	7 0.37	7 9	0	2	no		
8	3 30	30	0.34	4 8	22	0	no		
9		22	0.29	8	14	0	no		
10		14	1 0.86	i 11	3	0	yes	0.33	2
11	-	3	3 0.76	i 11	. 0	8	no		
12	2 30	30	0.41	9	21	. 0	no		
13		21	L 0.43	9	12	. 0	yes	0.34	2
14	4	12	0.72	2 10	2	. 0	no		
15	5 30	32	0.14	l 7	25	0	no		
16		25	5 0.14	1 7	18	0	no		
17		18	3 0.47	7 9	9	0	yes	0.8	3
18		9	9 0.6	5 10	0		no		()
19		0	0.81	11	0	11	no		
20	30	30	0.27			. 0	no	1	

This the Testing for a Reorder Policy - this is the recommended reorder strategy

ay	Units Received	Beginning Inventory	RandomNumber	Demand	Ending Inventory	Lost Sales	Order ?	Random Number	Lead Time
1	-	45	0.72	10	35	0	no		
2	2	35	0.28	8	27	0	no		
3	1	27	0.74	10	17	0	no		
4	ł	17	0.13	7	10	0	yes	0.19	1
5	45	55	0.66	10	45	0	no		
6	i	45	0.27	8	37	0	no		
7	7	37	0.37	9	28	0	no		
8	2	28	0.34	8	20	0	no		
9		20	0.29	8	12	0	yes	0.3	2
10)	12	0.86	11	1	0	no		
11	45	46	0.76	11	35	0	no		
12	2	35	0.41	9	26	0	no		
13		26	0.43	9	17	0	no		
14	l.	17	0.72	10	7	0	yes	0.34	2
15	5	7	0.14	7	0	0	no		
16	45	45	0.14	7	38	0	no		
17	7	38	0.47	9	29	0	no		
18		29	0.6	10	19	0	no		
19		19	0.81	11	8	0	no		
20)	8	0.27	8	0	0	yes	0.8	3

Human Resources Strategy

Managing of labor and design jobs so that employees are utilized in the most effective and efficient manner.

Constraints for the

Human Resource Strategy

What Strategy

Product strategy

- Materials needed and used
- Skills and talents that are needed
- Safety

Where Strategy

Location strategy

Temperature and Climate/Noise/Light/Air quality

When Strategy

Schedule strategy

- Work days/weeks/seasonal
- Schedule types that are beneficial for everyone

Who Strategy

Individual strengths and weaknesses

• Optimum use of information processing

Procedure Strategy

- Use of machinery and technology
- Safety Strategy

How Strategy

- Use of work cells, assembly lines
- Fixed positions, process and product layout

Strategy Factors

Ethics & Environment

- Equality, fairness, equity in the job design
- Safe working environment

Time Standards

 Definition of Time Study, work sampling and predetermined work times.

Ergonomics

- Employee comfort and safety
- Best Equipment designed for the workers
- Employee feedback on efficiencies

Job Design

- Incentives and motivation for employees
- Jobs for specialized employees and expansion
- Team that are self directed

Work Schedules

- Policies for working hours
- Work schedule strategies that increases employee morale and work commitment

Employment policies regarding stability

- Needed only on demand or constant operation
- Policies for constant oepration

Operations Management Philosophies

Just-In-Time (JIT)

Reducing Waste Exposing Bad Inventory Acquiring Quality Goods at Lower Cost

Lean Operations

Defining Value And what Customers are willing to pay

Ohno's Seven Wastes

Defective Products, Overprocessing, Motion, Inventory, Transportation, Queues (waiting lines) and Overproduction.

TPS

people and customer-oriented philosophy

Kanban

Produce and deliver as materials are consumed Pulling System

Critical Path Analysis and PERT Charts. (n.d.). Retrieved from www.mindtools.com: <u>http://www.mindtools.com/critpath.htm</u>

expected monetary value. (n.d.). Retrieved from http://www.businessdictionary.com/: <u>http://www.businessdictionary.com/definition/expected-monetary-value.html</u>

Just In Time (JIT). (n.d.). Retrieved from about.com: <u>http://logistics.about.com/od/supplychainglossary/g/JustInTime.htm</u>

Lean manufacturing. (n.d.). Retrieved from http://en.wikipedia.org/: <u>http://en.wikipedia.org/wiki/Lean_manufacturing</u>

Monte Carlo Simulation. (n.d.). Retrieved from www.investopedia.com: <u>http://www.investopedia.com/terms/m/montecarlosimulation.asp</u>

Project Crashing: What Options Do You Have? (n.d.). Retrieved from www.brighthubpm.com: <u>http://www.brighthubpm.com/resource-management/5055-project-crashing-what-options-do-you-ha</u> <u>ve/</u>